Hyaluronan stimulates tumor cell migration by modulating the fibrin fiber architecture.
نویسندگان
چکیده
The glycosaminoglycan hyaluronan, which supports tumor cell migration and metastasis, interferes with fibrin polymerization and leads to increased fiber size and porosity of fibrin clots. Here we have studied the proportionate effect of fibrin polymerization on hyaluronan-mediated migration of glioblastoma cells. The structural and physical properties of hyaluronan-containing fibrin gels were analyzed by turbidity measurement, laser scanning microscopy, compaction assay, and calculation of pore size by liquid permeation. When fibrin polymerized in the presence of hyaluronan or dextran, the resulting gels strongly stimulated cell migration, and migration significantly correlated with fiber mass-to-length ratios and pore diameters. In contrast, cell migration was not induced by addition of hyaluronan to supernatants of already polymerized gels. Hyaluronan-mediated migration was inhibited in fibrin gels by antibodies to alphav- and beta1integrins and the disintegrin echistatin, but not by antibodies to the hyaluronan receptor CD44 (up to 50 microg/ml). As a control, we show that anti-CD44 (10 microg/ml) inhibited cell migration on a pure hyaluronan matrix using a two-dimensional Boyden chamber system. In contrast to three-dimensional migration, the migration of cells on the surfaces of variably structured fibrin gels was not significantly different, indicating that increased gel permeability (porosity) may account for hyaluronan-mediated migration. We conclude that, in complex three-dimensional substrates, the predominant effect of hyaluronan on cell migration might be indirect and requires modulation of fibrin polymerization.
منابع مشابه
Hyaluronan stimulates pancreatic cancer cell motility
Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment wit...
متن کاملImportance of hyaluronan biosynthesis and degradation in cell differentiation and tumor formation.
Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes ha...
متن کاملThe Roles of Hyaluronan/RHAMM/CD44 and Their Respective Interactions along the Insidious Pathways of Fibrosarcoma Progression
Fibrosarcomas are rare malignant mesenchymal tumors originating from fibroblasts. Importantly, fibrosarcoma cells were shown to have a high content and turnover of extracellular matrix (ECM) components including hyaluronan (HA), proteoglycans, collagens, fibronectin, and laminin. ECMs are complicated structures that surround and support cells within tissues. During cancer progression, significa...
متن کاملFibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan.
After tissue injury, fibroblast migration from the peri-wound collagenous stroma into the fibrin-laden wound is critical for granulation tissue formation and subsequent healing. Recently we found that fibroblast transmigration from a collagen matrix into a fibrin matrix required the presence of fibronectin. Several integrins-alpha 4 beta 1, alpha 5 beta 1, and alpha v beta 3-with known fibronec...
متن کاملHyaluronan promotes signaling interaction between CD44 and the transforming growth factor beta receptor I in metastatic breast tumor cells.
In this study we have examined the interaction between CD44 (a hyaluronan (HA) receptor) and the transforming growth factor beta (TGF-beta) receptors (a family of serine/threonine kinase membrane receptors) in human metastatic breast tumor cells (MDA-MB-231 cell line). Immunological data indicate that both CD44 and TGF-beta receptors are expressed in MDA-MB-231 cells and that CD44 is physically...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 112 ( Pt 13) شماره
صفحات -
تاریخ انتشار 1999